

Merging and Validation of Cancer Registry Data using AI

ZuVaKI

WORKSHOP 4: IT tools and novel AI approaches for cancer registration

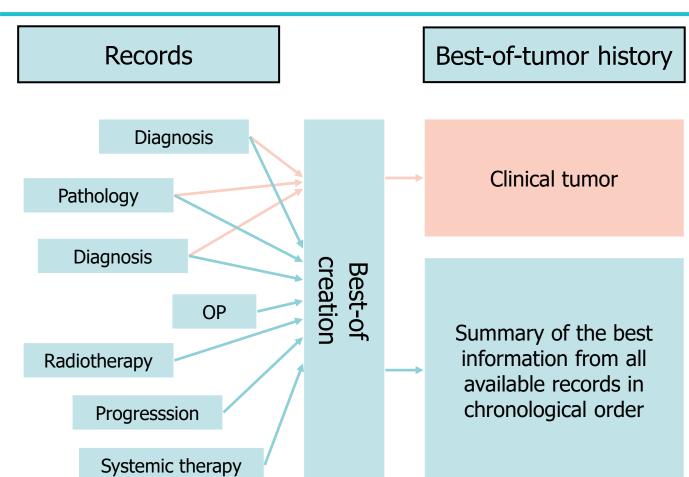
Philipp Leppert IDG Institut für digitale Gesundheitsdaten RLP gGmbH

Gefördert durch:

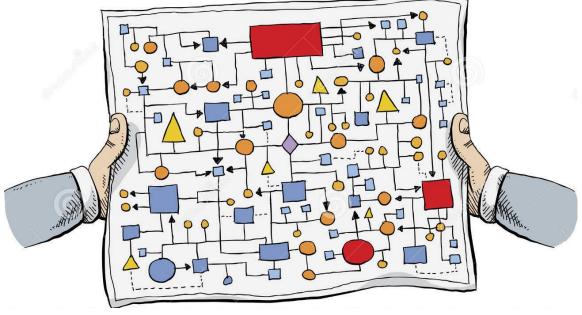
aufgrund eines Beschlusses des Deutschen Bundestages 13.11.2023

Project Members

Project Scope


Fields of investigation

- Identification of conspicuous records in cancer registry data (anomaly detection)
- Merging of possibly contradictory information on tumour diseases into a best-of tumour history (record fusion)
- Further information (only in German)
 - https://zuvaki.de
 - Project profile @BMG



Best-of Creation (Record Fusion)

 in part already automated, but mostly done manually

https://www.dreamstime.com/stock-illustration-complicated-flowchart-cartoon-two-arms-holding-tangled-flow-chart-paper-image77231017

Best-of Creation via AI

Goal

 Harmonising information from different records into a valid best-of tumour history through AI procedures

How?

- Supervised learning
 - e.g. Random forest

Labels?

Manually created best-of datasets

Approaching Quality Assurance

	Targeted quality assurance (queries / plausibility checks)	Untargeted quality assurance (data driven)
Advantages	Find only actual quality problemsType of quality problem known	 Find quality problems without restrictions Find quality problems with complex interrelationships
Limitations	 Only find quality problems we are looking for Difficult to map complex relationships 	Not all cases are quality problemsType of quality problem unknown

Quality Assurance via AI (Anomaly Detection)

Goal

- Finding unusual records through anomaly detection procedures at the domain of:
 - records, tumours, patients

How?

- Unsupervised learning
- Categorical data
 - e.g. Autoencoder, Frequent Pattern Based Outlier Detection

Area of application

After Record import? After record processing? In between?

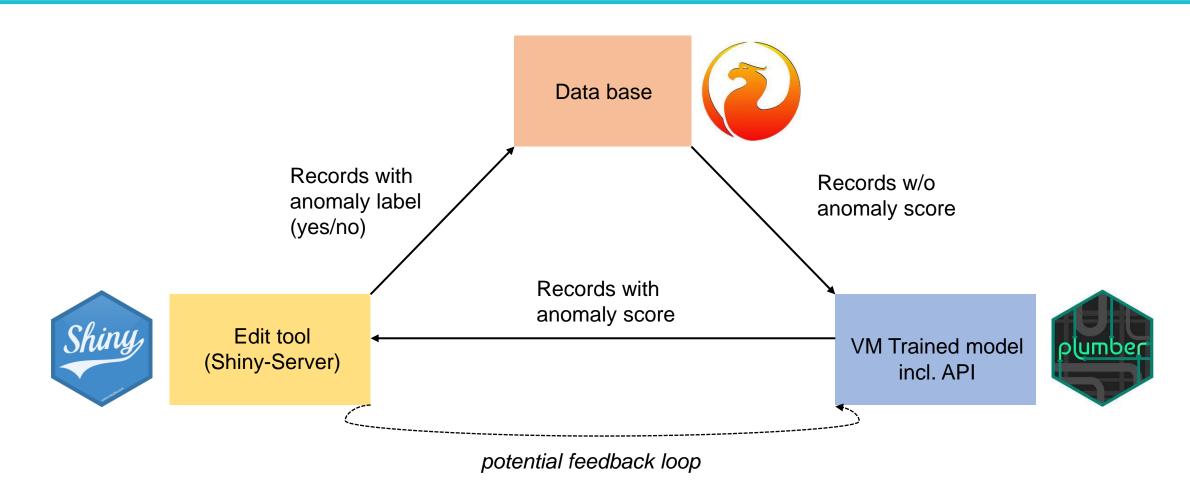
Challenges (so far)

Data from state cancer registries

- Different IT infrastructure and data management
- Different legal foundation

German Childhood Cancer Registry (DKKR)

Different data basis than the other state cancer registries


Domain knowledge for validation of AI procedures required

Especially in the context of anomaly detection (unsupervised learning)

Hands-on: Open-Source Validation Approach

Read More

Röchner, P., Rothlauf, F.
 Unsupervised anomaly detection of implausible electronic health records: a real-world evaluation in cancer registries.
 BMC Med Res Methodol 23, 125 (2023).
 https://doi.org/10.1186/s12874-023-01946-0

or via web browser: tiny.cc/zuvaki

